Symmetry in Markov Decision Processes and its Implications for Single Agent and Multiagent Learning

نویسندگان

  • Martin Zinkevich
  • Tucker R. Balch
چکیده

This paper examines the notion of symmetry in Markov decision processes (MDPs). We define symmetry for an MDP and show how it can be exploited for more effective learning in single agent systems as well as multiagent systems and multirobot systems. We prove that if an MDP possesses a symmetry, then the optimal value function andQ function are similarly symmetric and there exists a symmetric optimal policy. If an MDP is known to possess a symmetry, this knowledge can be applied to decrease the number of training examples needed for algorithms like Q learning and value iteration. It can also be used to directly restrict the hypothesis space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Multiagent Reinforcement Learning in Stochastic Games

We adopt stochastic games as a general framework for dynamic noncooperative systems. This framework provides a way of describing the dynamic interactions of agents in terms of individuals' Markov decision processes. By studying this framework, we go beyond the common practice in the study of learning in games, which primarily focus on repeated games or extensive-form games. For stochastic games...

متن کامل

Planning, Learning and Coordination in Multiagent Decision Processes

There has been a growing interest in AI in the design of multiagent systems, especially in multiagent cooperative planning. In this paper, we investigate the extent to which methods from single-agent planning and learning can be applied in multiagent settings. We survey a number of different techniques from decision-theoretic planning and reinforcement learning and describe a number of interest...

متن کامل

Q-learning in Two-Player Two-Action Games

Q-learning is a simple, powerful algorithm for behavior learning. It was derived in the context of single agent decision making in Markov decision process environments, but its applicability is much broader— in experiments in multiagent environments, Q-learning has also performed well. Our preliminary analysis finds that Q-learning’s indirect control of behavior via estimates of value contribut...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001